Case study: A survey of perceived noise in Canadian multi-unit residential buildings to study long-term implications for widespread teleworking

Author:

Andargie Maedot S.1ORCID,Touchie Marianne12,O’Brien William3

Affiliation:

1. Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada

2. Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada

3. Department of Civil and Environmental Engineering, Carleton University, Ottawa, ON, Canada

Abstract

Trends of urbanization, densification, and telework all point to increasing exposure to ambient noise for workers. With the lockdown policies implemented in response to COVID-19, a research opportunity to study perceived noise exposure for teleworking arose. This paper presents the results of a survey on noise issues in multi-unit residential buildings (MURBs) and the consequent effects on occupants' well-being and productivity during the lockdown. Responses were collected from 471 MURB occupants across Canada. The results show that, despite the decrease in environmental noise, many are annoyed by outdoor noise, particularly from traffic and construction activities, and indicated that it affects their ability to work. Effects on ability to work from home were more frequently reported for indoor noise sources particularly airborne and impact noises coming from neighboring suites. Our findings, however, show that noise coming from occupants in the same suite (i.e. roommates and family) present the biggest issue. The findings indicate that existing noise conditions in MURBs might not be suitable for a permanent large-scale implementation of teleworking.

Funder

HGC Engineering

Natural Sciences and Engineering Research Council of Canada

Ontario Early Researcher Award

Publisher

SAGE Publications

Subject

Mechanical Engineering,Acoustics and Ultrasonics,Building and Construction

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3