Flexible Polyurethane Foam with the Flame-retardant Melamine

Author:

Konig A.1,Fehrenbacher U.2,Hirth T.2,Kroke E.3

Affiliation:

1. Fraunhofer-Institut für Chemische Technologie, 76327 Pfinztal, Germany,

2. Fraunhofer-Institut für Chemische Technologie, 76327 Pfinztal, Germany

3. Technische Universität Freiberg, Institut für Anorganische Chemie, 09596 Freiberg, Germany

Abstract

Flexible polyurethane (PU) foams are widely used in many industrial applications, such as upholstered furniture and mattresses, automotive applications, etc. The chemical nature of the PU, the high air permeability, and the high inner surface area of the foam structure cause this material to be highly flammable. Consequently, the application of flame retardants to flexible PU foams is an important issue. The use of halogenated flame retardants is not considered optimal, in part due to the high emission level and the possible phase-out by the European Risk Assessment Body. Consequently, melamine as a nonhalogenated flame retardant is applied more and more frequently. However, little data is available regarding the application of melamine as an additive in flexible PU. This paper is concerned with the influence of melamine on the synthesis of the PU foam and the resulting material-specific properties. Especially, the increase of viscosity and the high heat capacity of melamine lead to a decrease in foaming growth and rising height with increasing melamine content. This is caused by the reduced drainage rate between the struts and the plateau borders in the foam-forming process. Here, the increase in viscosity follows the Dougherty—Krieger equation with the intrinsic viscosity of k = 3.3. The mechanical properties such as density and compression strength increase with increasing melamine content. Other properties like tensile strength and elongation decrease because of the embedding of the melamine in the PU matrix, which weakens the structure. The air permeation and number of cells also decreases because of the thickened struts caused by the reduced drainage rate in the foaming process. Furthermore, the reaction between the amino groups of melamine and the isocyanate of the PU formulation was investigated by FTIR.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3