Influence of cell type and skin-core structure on the tensile elasticity of the microcellular thermoplastic polyurethane foam

Author:

Ge Chengbiao12,Wang Shiping1,Zhai Wentao3ORCID

Affiliation:

1. Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang Province, China

2. University of Chinese Academy of Sciences, Beijing, China

3. School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China

Abstract

In this work, the foaming process was employed to achieve lightweight thermoplastic polyurethane materials, and then the hysteresis and residual strain of corresponding materials in the tensile process were quantitatively calculated. In order to study the deformed mechanism, the influences of cell type and skin-core structure on the tensile elasticity of thermoplastic polyurethane foam were investigated. The open-cell thermoplastic polyurethane foam exhibited much lower hysteresis and residual strain compared to thermoplastic polyurethane film without cell structure, which demonstrated that the open-cell structure benefited to the tensile elasticity. In the case of closed-cell thermoplastic polyurethane foam, it had lower hysteresis and residual strain than thermoplastic polyurethane film; however, higher value than the thermoplastic polyurethane film can be observed beyond 100% strain, resulting from the stress concentration in the skin-core structure. Consequently, the hysteresis phenomenon can be improved by adjusting the ratio of skin-core structure. Moreover, the influence of density on the elasticity of the open-cell thermoplastic polyurethane foam was also discussed in this study.

Funder

National Natural Science Foundation of China

Provincial Science and Technology Project of Guangdong Province

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3