Effect of Nanoclay on the Mechanical Properties of PMMA/Clay Nanocomposite Foams

Author:

Fu Jin1,Naguib Hani E.2

Affiliation:

1. Department of Mechanical Engineering, University of Ottawa Ottawa, Ontario, Canada K1N 6N5

2. Department of Mechanical and Industrial Engineering University of Toronto, Toronto, Ontario Canada M5S 3G8;

Abstract

In this study, the effects of nanoclay on the mechanical properties of poly(methylmethacrylate) (PMMA)/clay nanocomposite foams are investigated. Intercalated PMMA/clay nanocomposites have been prepared through a solvent co-precipitation method. PMMA/clay nanocomposites with only 0.5 wt% of well-dispersed montmorillonite nanoclay showed considerable improvement of mechanical properties; specifically in elastic modulus, tensile strength, and elongation at break. However, with an increased load of clay in the nanocomposite, the mechanical properties decreased due to the agglomeration of excessive nanoclay. Microcellular foams have been processed with PMMA/clay nanocomposite material using a subcritical gas foaming method. When a short foaming time is used, the increased amount of nanoclay induced a greater amount of heterogeneous nucleation during the foaming process and therefore decreased the density of the foam. In contrast, when a longer foaming time is used, foam density increased with a larger nanoclay load due to the higher diffusivity coefficient of CO2 blowing agent. Nanoclay, as a nucleation agent and reinforcement filler, changed the foaming behavior and mechanical properties of the PMMA microcellular foams. The microcellular foams made of PMMA/clay nanocomposite with 0.5 wt% exhibited an optimized mechanical response under tensile experiments. It is observed that the mechanical properties of nanocomposite foams are greatly related to the mechanical properties of unfoamed material and foam density. The nanoclay dispersion quality is a very important factor for the mechanical properties of both foamed and unfoamed polymer/clay nanocomposites.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3