Models of Glucagon Secretion, Their Application to the Analysis of the Defects in Glucagon Counterregulation and Potential Extension to Approximate Glucagon Action

Author:

Farhy Leon S.1,McCall Anthony L.1

Affiliation:

1. Department of Medicine, Center for Biomathematical Technology, University of Virginia, Charlottesville, Virginia

Abstract

This review analyzes an interdisciplinary approach to the pancreatic endocrine network-like relationships that control glucagon secretion and glucagon counterregulation (GCR). Using in silico studies, we show that a pancreatic feedback network that brings together several explicit interactions between islet peptides and blood glucose reproduces the normal GCR axis and explains its impairment in diabetes. An α-cell auto-feedback loop drives glucagon pulsatility and mediates triggering of GCR by hypoglycemia by a rapid switch-off of β-cell signals. The auto-feedback explains the enhancement of defective GCR in β-cell deficiency by a switch-off of signals in the pancreas that suppress α cells. Our models also predict that reduced β-cell activity decreases and delays the GCR. A key application of our models is the in silico simulation and testing of possible scenarios to repair defective GCR in β-cell deficiency. In particular, we predict that partial suppression of hyperglucagonemia may repair the impaired GCR. We also outline how the models can be extended and tested using human data to become a part of a larger construct including the regulation of the hepatic glucose output by the pancreas, circulating glucose, and incretins. In conclusion, a model of the normal GCR control mechanisms and their dysregulation in insulin-deficient diabetes is proposed and partially validated. The model components are clinically measurable, which permits its application to the study of the abnormalities of the human endocrine pancreas and their role in the progression of many diseases, including diabetes, metabolic syndrome, polycystic ovary syndrome, and others. It may also be used to examine therapeutic responses.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3