Incorporating Prior Information in Adaptive Model Predictive Control for Multivariable Artificial Pancreas Systems

Author:

Sun Xiaoyu1,Rashid Mudassir2ORCID,Hobbs Nicole1,Brandt Rachel1,Askari Mohammad Reza2,Cinar Ali12ORCID

Affiliation:

1. Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA

2. Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA

Abstract

Background: Adaptive model predictive control (MPC) algorithms that recursively update the glucose prediction model are shown to be promising in the development of fully automated multivariable artificial pancreas systems. However, the recursively updated glycemic prediction models do not explicitly consider prior knowledge in the identification of the model parameters. Prior information of the glycemic effects of meals and physical activity can improve model accuracy and yield better glycemic control algorithms. Methods: A glucose prediction model based on regularized partial least squares (rPLS) method where the prior information is encoded as the regularization term is developed to provide accurate predictions of the future glucose concentrations. An adaptive MPC is developed that incorporates dynamic trajectories for the glucose setpoint and insulin dosing constraints based on the estimated plasma insulin concentration (PIC). The proposed adaptive MPC algorithm is robust to disturbances caused by unannounced meals and physical activities even in cases with missing glucose measurements. The effectiveness of the proposed adaptive MPC based on rPLS is investigated with in silico subjects of the multivariable glucose-insulin-physiological variables simulator (mGIPsim). Results: The efficacy of the proposed adaptive MPC strategy in regulating the blood glucose concentration (BGC) of people with T1DM is assessed using the average percent time in range (TIR) for glucose, defined as 70 to 180 mg/dL inclusive, and the average percent time in hypoglycemia (<70 and >54 mg/dL) and level 2 hypoglycemia (≤54 mg/dL). The TIR for a cohort of 20 virtual subjects of mGIPsim is 81.9% ± 7.4% (with no hypoglycemia or severe hypoglycemia) for the proposed MPC compared with 73.9% ± 7.6% (0.2% ± 0.1% in hypoglycemia and 0.1% ± 0.1% in level 2 hypoglycemia) for an MPC based on a recursive autoregressive exogenous (ARX) model. Conclusions: The adaptive MPC algorithm that incorporates prior knowledge in the recursive updating of the glucose prediction model can contribute to the development of fully automated artificial pancreas systems that can mitigate meal and physical activity disturbances.

Funder

Juvenile Diabetes Research Foundation United States of America

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

Reference31 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3