Polarization-Based Diffuse Reflectance Imaging for Noninvasive Measurement of Glucose

Author:

Cameron Brent D.,Li Yanfang1

Affiliation:

1. Department of Bioengineering, University of Toledo, Toledo, Ohio

Abstract

Background: The ability to measure glucose concentration through noninvasive approaches would impact the treatment of diabetes significantly. Polarization-based optical approaches have received considerable interest because of their potential medical applications. Glucose, a chiral molecule, has the ability to rotate the plane of linearly polarized light, commonly referred to as optical activity, as well as changing the refractive index of the media, which therefore affects the overall scattering coefficient in a given media. The magnitude of each effect is related to the concentration of glucose. Although most previous studies have reported on the use of polarimetry in the aqueous humor of the eye because of its nonscattering nature, one would also expect that glucose concentration could be measured in more turbid media such as tissue through a similar approach. This study investigated how each of these effects is correlated to glucose concentration in a physiological range for highly scattering biological media. Methods: A custom-designed imaging polarimeter was used to image highly scattering Intralipid-based media containing different concentrations of glucose. Model formation and glucose prediction were performed through the use of partial least squares (PLS) regression. Further insight into the differences between polarization-based image measurements and encoding of glucose information was provided through the use of principal component analysis (PCA). Results: When coupled with PLS regression, in vitro polarization measurements yielded highly correlated glucose predictions in both calibration and independent validation, 0.999 and 0.998, respectively. Through the use of PCA, it appears that the majority of the image-based signal yielding the most significant glucose information is attributable to changes in the overall scattering coefficient due to glucose concentration and, to a lesser degree, effects of optical activity. Conclusions: This study showed how polarimetric-based imaging coupled with PLS regression can be used to quantify glucose concentration in highly scattering media. Such methods may potentially be able to extend the use of noninvasive in vivo polarimetric measurements, normally acquired in the anterior chamber of the eye, to other preferred sensing sites such as the skin.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3