Impact of Glucose Measurement Processing Delays on Clinical Accuracy and Relevance

Author:

Jangam Sujit R.1,Hayter Gary1,Dunn Timothy C.1

Affiliation:

1. Abbott Diabetes Care Inc., Alameda, California

Abstract

Background: In a hospital setting, glucose is often measured from venous blood in the clinical laboratory. However, laboratory glucose measurements are typically not available in real time. In practice, turn-around times for laboratory measurements can be minutes to hours. This analysis assesses the impact of turn-around time on the effective clinical accuracy of laboratory measurements. Methods: Data obtained from an earlier study with 58 subjects with type 1 diabetes mellitus (T1DM) were used for this analysis. In the study, glucose measurements using a YSI glucose analyzer were obtained from venous blood samples every 15 min while the subjects were at the health care facility. To simulate delayed laboratory results, each YSI glucose value from a subject was paired with one from a later time point (from the same subject) separated by 15, 30, 45, and 60 min. To assess the clinical accuracy of a delayed YSI result relative to a real-time result, the percentage of YSI pairs that meet the International Organization for Standardization (ISO) 15197:2003(E) standard for glucose measurement accuracy (±15 mg/dl for blood glucose < 75 mg/dl, ± 20% for blood glucose ≤ 75 mg/dl) was calculated. Results: It was observed that delays of 15 min or more reduce clinical accuracy below the ISO 15197:2003(E) recommendation of 95%. The accuracy was less than 65% for delays of 60 min. Conclusion: This analysis suggests that processing delays in glucose measurements reduce the clinical relevance of results in patients with T1DM and may similarly degrade the clinical value of measurements in other patient populations.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sustainable Use of Nanotechnology in Biomedical Sciences;Cutting-Edge Applications of Nanomaterials in Biomedical Sciences;2023-11-03

2. Dilemmas in parenteral glucose delivery and approach to glucose monitoring and interpretation in the neonate;Journal of Perinatology;2023-03-24

3. Glucose concentrations in enterally fed preterm infants;Journal of Perinatology;2020-08-05

4. Impact of High-Dose Intravenous Vitamin C for Treatment of Sepsis on Point-of-Care Blood Glucose Readings;Journal of Diabetes Science and Technology;2019-11-25

5. Neonatal Hypoglycemia;Pediatrics In Review;2017-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3