Prospective geothermal well and heat catchment locations in Nigeria: Remote sensing interpretations and field validation

Author:

Akpan GE1,Emetere ME23ORCID,Afolalu SA4,Jen TC3

Affiliation:

1. Department of Physics, Covenant University, Ota, Nigeria

2. Department of Physics, Bowen University, Iwo, Nigeria

3. Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa

4. Afe Babalola University, Ado-Ekiti, Nigeria

Abstract

Geothermal energy is a renewable energy that is environmentally friendly and will help reduce greenhouse emission resulting from the burning of fossil fuels. Nigeria has numerous geothermal surface manifestations like hot and warm springs in most parts of the country that has not been exploited or explored due to the initial high cost of exploration. Most research conducted on geothermal energy prospects in Nigeria considered specific geographical sections. Due to the geological features of Nigeria, the direct and indirect tectonic activities, there is the need to map the thermal anomalies over Nigeria to determine likely geothermal wells and ground heat catchment in Nigeria. Forty years remote sensing dataset (1980–2019), was obtained from the MERRA-2 for three hundred and two (302) locations across Nigeria. The acquired thermal parameters were processed using known models. The data was also analyzed statistically and spatially using the Statistical Package for Social Sciences (SPSS) and Quantum Geographic Information System (QGIS). The results of show that the Gummel-Kumaganum areas of chad basin, Owode-igbo ora areas of the Dahomey basin, Belli area of the basement complex in Taraba state, potiskum areas of the Upper benue Basin, Ekpoma-kwale, itu areas of the Niger delta basin are middle geothermal wells with the terrestial radiation of < −702 W/m2 while the terrestial radiation >200 W/m2 in the Gummi area of the sokoto basin, Hunkuyi area of the basement complex in the northeast, Gashua area of the chad basin, Ozubulu-idah area of Anambra basin, Atijere area of the Dahomey basin, Agbasa, Omoko, Akamkpa area of Niger delta basin, Shaki area of the southwest basement complex are heat catchment regions. Other heat catchment areas had been identified for standalone energy generation. Also, the thermal anomalies in those areas were significant. The validation of the result was achieved via benchmarking similar geothermal well around the globe and ground truthing at Ijebu-Ode Nigeria. Based on the thermal reversal depth (TRD) concept, Ijebu-Ode may have a deep geothermal well with temperatures pattern similar to geothermal wells in other parts of the globe. It is recommended that ground measurement should be carried out in the basement complex to cater for geothermal systems whose mechanism is based on conduction.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Curie point depth and heat flow estimations for geothermal energy exploration in parts of southern Nigeria’s inland basins;Environment, Development and Sustainability;2024-07-27

2. Modeling of Wellbore Heat Transfer in Geothermal Production Well;IOP Conference Series: Earth and Environmental Science;2024-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3