Operation optimization of distributed multi-energy multi-microgrid considering system robustness

Author:

Feng Fei12ORCID,Du Xin1,Si Qiang2,Cai Hao23

Affiliation:

1. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China

2. Jiangsu Provincial Research and Development Center of Energy Internet and Large Data Integration Application Engineering Technology, Changzhou Vocational Institute of Engineering, Changzhou, China

3. School of Electrical Engineering, Southeast University, Nanjing Jiangsu, China

Abstract

Carbon emission trading is regarded as an effective way to combine energy economy with green and low-carbon, which brings new vitality to the traditional multi-micro grid day-ahead dispatch. In this paper, a robust decentralized energy management framework is proposed for monitoring a collaborative structure of gas turbines, gas boilers, ground source heat pumps, energy storage and electrolyzers, etc for microgrid in the presence of power to gas and carbon capture systems. The price sensitivity of the power market results in the fluctuations of multi-micro grid dispatching. The worst-scenario uncertainty of multi-micro grid is managed by adopting trading prices at different conservativeness levels. The kalman filter distributed algorithm based on iteration is used to decompose the dispatch problem to minimize the total daily overhead of the multi-micro grid system while protecting microgrid data privacy. Finally, the simulation results represent the effectiveness of the proposed decentralized model of trading prices to meet the demand for electricity and heat. At the same time, the kalman filter distributed algorithm is compared with the alternating direction multiplier method algorithm to ensure accuracy and speed.

Funder

Changzhou Science and Technology Project: Study of control mechanism and application of constant radiation temperature prediction model under radiation cooling

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3