Numerical simulation of hybrid nanofluid flow with homogeneous and heterogeneous chemical reaction across an inclined permeable cylinder/plate

Author:

Jubair Sidra1,Ali Bilal2,Rafique Khadija3ORCID,Mahmood Zafar34ORCID,Emam Walid5

Affiliation:

1. School of Mathematical Sciences, Dalian University of Technology, Dalian, China

2. School of Mathematics and Statistics, Central South University Changsha, Hunan, China

3. Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan

4. Higher Education Department, AJ&K, Pakistan

5. Department of Statistics and Operations Research, Faculty of Science, King Saud University, Riyadh, Saudi Arabia

Abstract

The current study investigates the steady two-dimensional (2D) hybrid nanofluid (Hnf) flow over an inclined permeable plate/cylinder. The Hnf flow has been examined in the context of mixed convection, heterogeneous/homogenous chemical reaction, and permeable medium. The Hnf is prepared by dispersing silver (Ag), and iron ferrite (Fe3O4) nanoparticles (NPs) in water. The current research is motivated by the increasing demand for highly efficient cooling devices in a variety of industries and energy-associated operations. The energy transmission and fluid flow are mathematically specified by using a coupled nonlinear system of partial differential equations (PDEs). The system of PDEs is simplified into a dimensionless form of ODEs, which are then further numerically treated with the MATLAB package based on the finite difference method (bvp4c). It has been noticed that the permeability component develops the heat transfer curve while decreasing the flow rate of the fluid. The impact of heat source/sink increases the energy profile. Moreover, the plate surface demonstrates the dominant behavior of energy transportation than a cylinder with the variance of Ag-Fe3O4-NPs.

Funder

King Saud University

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3