Microstructure and wear resistance of cold sprayed CoCrFeNi HEA coatings: Influence of powder particle size and spraying temperature

Author:

Chai Qing1,Jiang Chaoxin1,Zhang Chao1,Yin Shuo12

Affiliation:

1. College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China

2. Department of Mechanical, Manufacturing & Biomedical Engineering, Parsons Building, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland

Abstract

This study focuses on the successful fabrication of three distinct types of CoCrFeNi high entropy alloy (HEA) coatings through cold spray (CS) technology, with an emphasis on analyzing the impact of varying crucial CS parameters (spraying temperature and the range of powder particle size), on the coating's microstructure and tribological properties. Contrasted with conventional thermal spraying techniques, lower operational temperature in CS safeguards the materials from undergoing oxidation or phase transitions that are typically induced by high-temperature conditions. Additionally, the high-velocity impact of particles onto the substrate within CS process triggers plastic deformation, resulting in the creation of coatings that are characterized by heightened hardness, and greater density. Such coatings exhibit significantly enhanced performance and durability. The cocktail effect observed in CoCrFeNi HEA is reflected in a suite of exceptional properties that markedly surpass those exhibited by traditional alloys. Chiefly, this phenomenon is manifested through the alloy's exceptionally high hardness and dense structure, positioning CoCrFeNi HEA as a promising candidate for applications in high-wear scenarios. Experimental outcomes indicate that when smaller powder particles and higher spraying temperatures are employed, the porosity of CSed CoCrFeNi HEA coatings was observed to decrease by nearly an order of magnitude, concomitant with a 22.46% enhancement in microhardness. This improvement in microhardness translates into a significant reduction of over 72% in the wear rate, underscoring the positive correlation between enhanced microstructural integrity and wear resistance properties. By meticulously tuning spraying temperature and powder particle size, the resulting microstructure can be rendered increasingly dense and refined.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3