Surface modification of biomedical titanium alloy for hard tissue repair and reconstruction

Author:

Dong Zhihong1,Huang Zhiqiang1,Tang Lu2,Lan Hai2

Affiliation:

1. School of Mechanical Engineering, Chengdu University, Chengdu, China

2. Affiliated Hospital and Clinical College, Chengdu University, Chengdu, China

Abstract

In biomedical applications, various materials are used, including metals and their alloys, polymers and ceramics. Among them, titanium (Ti) and titanium alloys are widely utilised in implant materials due to their excellent corrosion resistance and high mechanical strength. However, despite these advantages, titanium is biologically inert and does not integrate well with human cells. Therefore, surface modification of titanium implants plays a crucial role in determining the rate of osseointegration and the overall success of the implants. The primary objective of this review is to provide a detailed introduction to surface modification technologies for titanium alloy implants. The aim is to enhance the biological activity, wear resistance, corrosion resistance and antibacterial properties and reduce the release of ions from the implants. By modifying the surface of titanium implants, it is possible to create a more favourable environment for cell adhesion, proliferation and differentiation. Various techniques, such as physical methods (e.g. sandblasting, acid etching) and chemical methods (e.g. surface oxidation, plasma treatment) can be employed to modify the surface properties of titanium implants. These surface modification techniques can enhance the interaction between the implant and the surrounding biological environment, promoting osseointegration and improving the long-term stability of the implant. Additionally, surface modifications can help reduce the release of potentially harmful ions from the implant, minimise bacterial adhesion and improve the overall biocompatibility of the implant. In conclusion, surface modification of titanium alloy implants is a critical aspect of biomedical engineering. By improving the biocompatibility of titanium implants, these modifications contribute to the success and longevity of implants used in hard tissue repair and reconstruction.

Funder

National Natural Science Foundation project

Key Transformation Project of Sichuan Science and Technology Department

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3