Development and control of an active torsional vibration damper for vehicle powertrains

Author:

Yücesan Alisan1ORCID,Mugan Ata2

Affiliation:

1. Control and Automation Engineering Department, Istanbul Technical University, Istanbul, Turkey

2. Mechanical Engineering Department, Istanbul Technical University, Istanbul, Turkey

Abstract

Due to environmental pollution concerns, emission regulations on internal combustion engines (ICEs) have been tightening and the importance of fuel efficiency has become pronounced. Thereupon, downsizing, downspeeding, turbo supercharging, and cylinder deactivation techniques have been implemented in designing modern ICEs. Despite their considerable benefits, these methods result in boosted torsional oscillations necessitating new vibration isolation technologies due to the limited performance of passive torsional vibration dampers. In addition, trade-offs are indispensable in the passive damper system designs since different engine operating points demand different values of oscillation attenuation parameters. Thus, this study was initiated to develop a novel active torsional vibration damper (ATVD) to attenuate the torsional vibrations of all engine operating points without making any trade-off and to open up a new comfort zone for the development of modern ICEs. Proposed ATVD is essentially a parametrically excited system that adjusts the stiffness rate, damping rate, and moment of inertia in accordance with a fuzzy logic control (FLC) law to maximize engine-borne torsional vibration attenuation capability. The ATVD performance is evaluated in a co-simulation environment by using a driving cycle with six engine operating points and its advantages over conventional passive dampers are demonstrated.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Design Optimization Process of Improving the Automotive Subframe Dynamic Stiffness Using Tuned Rubber Mass Damper;SAE International Journal of Vehicle Dynamics, Stability, and NVH;2024-04-18

2. Grey wolf optimization tuned drivetrain vibration controller with backlash compensation strategy using time-dependent-switched Kalman filter;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2024-03-24

3. Experimental verification of active oscillation controller for vehicle drivetrain with backlash nonlinearity based on norm-limited SPSA;Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics;2024-03

4. Torsional Vibration Attenuation of HEV Drivetrain Featuring on a Controllable Damper;SAE Technical Paper Series;2023-10-30

5. Bode-based speed Proportional Integral and notch filter tuning of a Permanent Magnet Synchronous Machine driven flexible system;2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM);2022-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3