Optimum design for passive suspension system of a vehicle to prevent rollover and improve ride comfort under random road excitations

Author:

Seifi Abolfazl1,Hassannejad Reza1,Hamed Mohammad A1

Affiliation:

1. Department of Mechanical Engineering, University of Tabriz, Tabriz, Iran

Abstract

The main functions of suspension system are to provide ride comfort for the passengers and vehicle handling (road holding). But, in many studies, full attention to the ride comfort leads to the determination of incorrect suspension system parameters as well as other problems such as rollover and reducing road-holding ability in the vehicle. The aim of this study is to present a method for the optimized design of the vehicle suspension system in order to improve the ride comfort, road holding, workspace and preventing rollover, considering a full vehicle model with 11-DOF. The most important feature of this study is that the prevention of rollover factor and all of suspension functions are considered simultaneously. In this research, in order to assess the ride comfort, the vertical acceleration values of seats that are caused by random road roughness are calculated by power spectral density of road in frequency domain. In the context of prevention of rollover, Fishhook manoeuvre is performed using a mathematical model for the roll motion, and then the dynamic behaviour of the variables is considered in rollover threshold. Then, the optimization problem is solved to minimize the vertical acceleration values and vehicle roll angle by considering the physical limitation and safety of the model. The results of the optimization show that the vertical acceleration, in frequency domain at the desired boundary values (as defined in ISO 2631), decreases and rollover resistance of the vehicle increases.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3