Railway vehicle modelling for the vehicle–track interaction compatibility analysis

Author:

Magalhães H1,Ambrósio J2,Pombo J13

Affiliation:

1. LAETA, IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

2. Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

3. Heriot-Watt University, Edinburgh, UK & ISEL, IPL, Lisboa, Portugal

Abstract

Railway vehicle homologation with respect to running dynamics is addressed via dedicated norms that require the knowledge of the accelerations and wheel–rail contact forces obtained from experimental computational testing. Multibody dynamics allows the modelling of railway vehicles and their simulation on realistic operations conditions. However, the representativeness of the multibody models, and the results of their use in railway dynamics are greatly influenced by the modelling assumptions and their ability to represent the operational conditions. In this paper, two alternative multibody models of a railway vehicle are presented and simulated in a realistic railway track scenarios to appraise the consequences of different modelling assumptions on the railway dynamic analysis outcome. A vehicle–track interaction compatibility analysis is performed afterwards according to norm EN 14363. The analysis consists of two stages: the use of a simplified method, described in the norm for the identification of the different performance indexes from the railway vehicle dynamic analysis outcome; and the visual inspection of the vehicle motion with respect to the track via dedicated visualization tools. The results of the virtual vehicle homologation tests are presented and discussed in face of the modelling assumptions used, being significant differences identified between the railway vehicle modelled with cylindrical joints with clearances or with equivalent force elements. It is also concluded that the use of clearance joints prevents the need to use modelling assumptions on the equivalent force elements that have limited or no physical meaning, thus reducing the number of modelling parameters for which a high level of abstraction has to be exercised.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

Reference48 articles.

1. Modelling of suspension components in a rail vehicle dynamics context

2. Nikravesh PE. Computer-aided analysis of mechanical systems, Englewood Cliffs, NJ: Prentice Hall, 1988, pp. xiii–xiii.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3