Research on load-sharing characteristics of six-branch herringbone gear transmission system

Author:

Liu Linlin1ORCID,Wang Sanmin1,Zou Haoran1ORCID,Li Zhibin1ORCID,Ge Jinshuai1

Affiliation:

1. School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, P.R. China

Abstract

With the continuous development of high-speed and high-power gear transmission technology, as well as the new demand for vibration and noise reduction in high-speed and heavy-duty gear transmission systems in fields such as aviation and navigation, the herringbone gear branch transmission system is subject to higher requirements in terms of its dynamic characteristics. Therefore, it is necessary to conduct research on the dynamic characteristics of high-power and high-torque herringbone gear branch transmission systems. Based on the lumped parameter method, a bending-torsion coupling dynamic model of the transmission system is established, and a calculation method for load-sharing coefficients (LSCs) is proposed. The LSCs are obtained for each gear pair in the same meshing period of the transmission system that is under the interaction of time-varying internal excitation. The meshing force of the six-branch gearing system was calculated in ADAMS to verify the validity of the established dynamic model. The study results indicate that errors have a negative impact on the sharing performance. To maintain a sharing coefficient below 1.15, the manufacturing and installation errors of gears Z5 and Z6 should be restricted to 9 µm and 7 µm, respectively. Special attention should be given to gear Z5 in terms of support stiffness, with a value of 1 × 108 N/m being the most favorable. During the system design, the initial phase of the installation error should be considered and preferably selected near 180°. Additionally, the system exhibits easier load sharing with higher input power. The optimal torsional stiffness of the duplex shaft is 5 × 107 N/m, while the optimal bending stiffness is 5 × 108 N/m. This study aimed to provide a theoretical foundation for the design and optimization of marine high-power gear transmission systems.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3