Theoretical model to predict the effect of localized defect on dynamic behavior of cylindrical roller bearing at inner race and outer race

Author:

Patel Utkarshkumar Arvindbhai1,Upadhyay Sanjay H2

Affiliation:

1. Department of Mechanical Engineering, L.D. College of Engineering, Ahmedabad, Gujarat, India

2. Department of Mechanical and Industrial Engineering, Indian Institute of Technology, Roorkee, India

Abstract

The dynamic response of bearing under load and speed often determine the performance limitations of the machines and it is necessary to be able to predict bearing dynamic performance as an integral part of machine design analysis. In this paper, a mathematical model has been developed to investigate a nonlinear dynamic behavior of a rotor-bearing system due to localized defects of inner race and outer race. In the mathematical formulation, the contacts between rolling elements and inner/outer race is considered as nonlinear springs whose stiffness is obtaining using Hertz contact stress theory. Here nonlinear damping is also taken into consideration for cylindrical roller bearing. The governing equations of motion are formulated by using energy approach. Contact force and contact stiffness having nonlinearity and is calculated by using Newton–Raphson method for n-unknown nonlinear simultaneous equation. The new mark implicit integration technique is coupled with the Newton–Raphson method to solve the differential equations. A computer program is developed to simulate the defect on inner race and outer race and all the results are represented in the time and frequency domain. Equations of motions are solved by using Newmark-β method for phase plot/Poincare map. The proposed mathematical model is also compared with experimental results having radial and axial load condition. From the results obtained from the predicted model for frequency spectrum and phase plot at various speeds, the mathematical modeling and experimental results are found quite similar.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3