Biochemical and Functional Analyses of Chromatin Changes at the TCR-β Gene Locus During CD4−CD8− to CD4+CD8+ Thymocyte Differentiation

Author:

Chattopadhyay Samit1,Whitehurst Charles E.1,Schwenk Frieder2,Chen Jianzhu1

Affiliation:

1. *Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139; and

2. †Institute for Genetics, University of Cologne, Cologne, Germany

Abstract

AbstractAllelic exclusion is the process wherein lymphocytes express Ag receptors from only one of two possible alleles, and is effected through a feedback inhibition of further rearrangement of the second allele. The feedback signal is thought to cause chromatin changes that block accessibility of the second allele to the recombinase. To identify the putative chromatin changes associated with allelic exclusion, we assayed for DNase I hypersensitivity, DNA methylation, and transcription in 100 kb of the TCR-β locus. Contrary to current models, we identified chromatin changes indicative of an active and accessible locus associated with the occurrence of allelic exclusion. Of 11 DNase I hypersensitive sites identified, 3 were induced during CD4−CD8− to CD4+CD8+ thymocyte differentiation, and demethylation and increased germline transcription of the locus were evident. We further examined the role of the most prominently induced site near the TCR-β enhancer (Eβ) in allelic exclusion by targeted mutagenesis. Two other sites were also examined in New Zealand White (NZW) mice that have a natural deletion in the TCR-β locus. TCR-β gene recombination and allelic exclusion were normal in both mutant mice, negating dominant roles for the three hypersensitive sites in the control of allelic exclusion. The data suggest that alternative cis-regulatory elements, perhaps contained in the Eβ enhancer and/or in the upstream Vβ region, are involved in the control of TCR-β allelic exclusion.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3