Direct Binding and Functional Transfer of NK Cell Inhibitory Receptors Reveal Novel Patterns of HLA-C Allotype Recognition

Author:

Winter Christine C.1,Gumperz Jenny E.2,Parham Peter2,Long Eric O.1,Wagtmann Nicolai1

Affiliation:

1. *Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852; and

2. †Departments of Structural Biology and Microbiology and Immunology, Stanford University, Stanford, CA 94305

Abstract

Abstract Cytotoxicity of human NK cells is under negative control of killer cell Ig-like receptors (KIR) specific for HLA class I. To determine the specificity of five KIR containing two Ig domains (KIR2D), direct binding of soluble recombinant KIR2D to a panel of HLA class I transfectants was assayed. One soluble KIR2D, derived from an inhibitory receptor with a long cytoplasmic tail (KIR2DL1), bound to HLA-C allotypes containing asparagine 77 and lysine 80 in the heavy chain, as expected, since these allotypes inhibit lysis by NK cells expressing KIR2DL1. Surprisingly, another KIR2D (KIR2DL2), which inhibits NK lysis of cells expressing HLA-C molecules with serine 77 and asparagine 80, bound to HLA-C allotypes carrying either amino acid motif. Expression of the KIR2DL receptors in NK cells using recombinant vaccinia viruses confirmed these patterns of recognition, and identified KIR2DL3 as another KIR reacting with both groups of HLA-C allotypes. Mutagenesis of amino acid 44 in KIR2DL1 and KIR2DL2 suggested this residue controls the affinity of KIR for the 77/80 motif of HLA-C molecules. Two other soluble KIR2D, derived from noninhibitory receptors with short cytoplasmic tails (KIR2DS), did not bind to any of the HLA class I allotypes tested. One of these receptors (KIR2DS2) is closely related in sequence to KIR2DL2. Substitution of tyrosine 45 with the phenylalanine conserved in other KIR was sufficient to permit specific binding of KIR2DS2 to HLA-C. These results show that KIR2DL receptors are specific for HLA-C, but that recognition of HLA-C allotypes appears more permissive than indicated by previous functional experiments.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3