A combination of SEMMA & CRISP-DM models for effectively handling big data using formal concept analysis based knowledge discovery: A data mining approach

Author:

Omari Firas

Abstract

Data analytics has emerged as one of the most advanced technologies in recent times. However, the successful implementation of analytics is still a great challenge since they suffer from technical barriers and have a lack of structured approaches for performing analytics. Data mining models are considered as a potential tool for solving problems related to data analytics. Data mining is a process used for extracting the relevant attributes from raw data, which is further processed using the mechanism of knowledge discovery for support decision making. Formal concept analysis (FCA) provides a robust platform for knowledge discovery and helps in the successful adoption of data mining for handling big data. Several mining techniques powered by FCA are discussed by the researchers. However, the analysis of FCA suggests that the effectiveness of FCA for big data needs, a deeper investigation in order to expand its application horizon. In this context, this research emphasizes the application of FCA for developing an effective strategy through a combination of SEMMA and CRISP models for handling big data by integrating knowledge discovery with data mining.

Publisher

GSC Online Press

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3