Utilizing Autoencoders for Analysis and Classification of Microscopic in Situ Hybridization Images

Author:

Yanev Aleksandar,Momcheva Galina,Pavlov Stoyan

Abstract

Currently, analysis of microscopic In Situ Hybridization (ISH) images is done manually by experts. Precise evaluation and classification of such microscopic images can ease experts' work and reveal further insights about the data. In this work, we propose a deep-learning workflow to detect and classify areas of microscopic images with similar levels of gene expression. Analysis of the data is done by employing a type of ANN – Deep Learning Autoencoders – suitable for unsupervised learning. The model's performance is optimised by balancing the latent layers' length and complexity and fine-tuning hyperparameters. The results are validated by adapting the mean-squared error (MSE) metric and comparison to expert's evaluation. Reconstruction of the whole-scale microscopic images is used to summarise and visualise the results.

Publisher

Prof. Marin Drinov Publishing House of BAS (Bulgarian Academy of Sciences)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3