Нелинейная модель вязкоупругопластичности типа Максвелла: моделирование влияния температуры на кривые деформирования, релаксации и ползучести

Author:

Хохлов Андрей Владимирович1ORCID,Khokhlov Andrew Vladimirovich2

Affiliation:

1. Московский государственный университет имени М. В. Ломоносова, Научно-исследовательский институт механики, г. Москва, 119192, Россия

2. Lomonosov Moscow State University, Institute of Mechanics, Moscow, 119192, Russian Federation

Abstract

Исследуются область применимости, арсенал возможностей и способы идентификации и настройки нелинейного определяющего соотношения типа Максвелла для вязкоупругопластичных материалов с двумя произвольными материальными функциями и двумя параметрами (в случае одноосного изотермического нагружения). Оно нацелено на описание комплекса основных реологических эффектов, типичных для реономных материалов, обладающих наследственностью, высокой скоростной чувствительностью и разносопротивляемостью, для которых характерны установившаяся ползучесть, стадия течения при постоянном напряжении и возрастание податливости, скоростей диссипации, релаксации, ползучести и рэтчетинга и скоростной чувствительности с увеличением температуры. К ним относятся, в частности, многие полимеры, их расплавы и растворы, композиты, твердые топлива, асфальтобетоны, титановые и алюминиевые сплавы, углеродные и керамические материалы при высоких температурах и др. Для учета влияния температуры на механическое поведение материалов (при изотермических процессах) два материальных параметра модели (коэффициент вязкости и «модуль упругости») рассматриваются как функции температуры. Найдены ограничения на свойства этих функций, необходимые и достаточные для адекватного описания качественных характеристик влияния температуры на экспериментальные кривые ползучести, релаксации, деформирования с постоянными скоростями, ползучести при ступенчатом нагружении, на касательный модуль и предел текучести, скоростную чувствительность и скорость накопления пластической деформации, типичных для стабильных вязкоупругопластичных материалов в изотермических квазистатических испытаниях. Они получены в результате аналитического изучения свойств кривых релаксации, ползучести и деформирования, порождаемых определяющим соотношением типа Максвелла с произвольными материальными функциями, и их сопоставления с типичными свойствами экспериментальных кривых реономных материалов. Доказано, что коэффициент вязкости, «модуль упругости» и их отношение (время релаксации ассоциированной линейной модели Максвелла) должны быть убывающими функциями температуры, и это обеспечивает адекватное качественное описание десятка наблюдаемых базовых термомеханических эффектов, свидетельствующих о возрастании податливости материалов (в частности, убывании касательного модуля и предела текучести), скоростей релаксации, ползучести и рэтчетинга и скоростной чувствительности с ростом температуры.

Funder

Russian Foundation for Basic Research

Publisher

Samara State Technical University

Subject

Applied Mathematics,Mechanics of Materials,Condensed Matter Physics,Mathematical Physics,Modelling and Simulation,Software,Analysis

Reference76 articles.

1. Свойства семейства диаграмм деформирования с постоянной скоростью нагружения, порождаемых нелинейной моделью вязкоупругопластичности типа Максвелла;Хохлов А. В.;Машиностроение и инженерное образование,2017

2. Properties of stress-strain curves generated by the nonlinear Maxwell-type viscoelastoplastic model at constant stress rates;Khokhlov A. V.;Mashinostroenie i inzhenernoye obrazovanie,2017

3. Свойства нелинейной модели вязкоупругопластичности типа Максвелла с двумя материальными функциями;Хохлов А. В.;Вестник Московского университета. Сер. 1. Математика, механика,2016

4. Properties of the nonlinear Maxwell-type model with two material functions for viscoelastoplastic materials;Khokhlov A. V.;Moscow University Mechanics Bulletin. Ser.1. Matematica, mekhanica,2016

5. Нелинейная модель вязкоупругопластичности типа Максвелла: свойства кривых ползучести при ступенчатых нагружениях и условия накопления пластической деформации;Хохлов А. В.;Машиностроение и инженерное образование,2016

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3