Residue Number Systems Quantization for Deep Learning Inference

Author:

Sivkov Sergey1

Affiliation:

1. Electrical Engineering Faculty Perm National Research Polytechnic University 614013, Perm, 7 Professora Pozdeeva Street, Office 225 RUSSIA

Abstract

Quantization of learned CNN weights to Residue Number System can improve inference latency by taking advantage of fast and precise low bit integer arithmetic. In this paper we review the mathematical aspects of RNS operations for signed integer values and evaluate implementation choices for conversion of conventional float-point PyTorch weights of CNN models to RNS representation. We also present a workflow to convert weights of PyTorch neural network layers specific for computer vision domain to 4-bit RNS moduli-sets able to maintain classification accuracy within 5% of 8-bit quantization baseline.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Concept-based Extension of SKOS Defense Controlled Vocabulary: Techniques and Implications;WSEAS TRANSACTIONS ON INFORMATION SCIENCE AND APPLICATIONS;2024-05-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3