Analysis of Multiuser Detectors and Performance improvement in DS-CDMA system using Multistage Multiuser Detection Techniques

Author:

Ravindrababu J.1,Swathi Dasi1,Teja J. V. Ravi2,Chandra J. V. Ravi3,Sri N. Pranavi1,Arshiya Shaik1

Affiliation:

1. E.C.E Department, P.V.P., Siddhartha Institute of Technology, Vijayawada, INDIA

2. FactSet Systems Pvt.Ltd, Hyderabad, INDIA

3. C.S.E Department, V.R. Siddhartha Engineering College, Vijayawada, INDIA

Abstract

The Direct Sequence Code Division Multiple Access (DS-CDMA) system faces several disruptions, this is most crucial of which is the Multi Access Interference (MAI) caused by its users. The efficiency of the system gradually declines as every quantity rises, and the MAI rises, especially in faded environments. This work proposes a multiple-phase multiuser identification approach called Differencing Partial Parallel Interference Cancellation (DPPIC), which improves the overall efficiency. The methods known as Differencing Parallel Interference Cancellation (DPIC) and Partial Parallel Interference Cancellation (PPIC) are combined in this methodology. Current solutions for Parallel Interference Cancellation (PIC) and PPIC have enhanced overall effectiveness; however, this has come at the expense of increasing the complexity of computation. As the variety of consecutive stages grows, the MAI falls. Using the DPIC approach may reduce the computational burden without improving system functionality. The use of the Partial Differencing Parallel Interference Cancellation (PDPIC) technique can enhance system performance while lowering the level of complexity. According to the simulation findings, Bit Error Rate (BER) vs normalized signal strength (i.e., Eb / N0) performs more effectively for the suggested DPPIC approach than for PIC, the PPIC, and PDPIC.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3