Exploring Surfactant-Enhanced Stability and Thermophysical Characteristics of Water-Ethylene Glycol-Based Al2O3-TiO2 Hybrid Nanofluids

Author:

Urmi Wajiha Tasnim1,Rahman M. M.1,Kadirgama K.1,Ramasamy D.1,Samykano M.1,Ali M. Y2

Affiliation:

1. Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600 Pahang, MALAYSIA

2. Centre for Research in Advanced Fluid & Processes, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600 Pahang, MALAYSIA

Abstract

This study presents an empirical investigation into the impact of surfactant's enhanced stability and thermophysical characteristics of water-ethylene glycol (60:40) based Al2O3-TiO2 hybrid nanofluids. It aims to shed light on the nanofluid's behavior, mainly how surfactants affect its stability and thermal performance, thus contributing to advancements in heat transfer technology and engineering applications. The growing interest in nanofluids, which involves blending nanoparticles with conventional base fluids, spans diverse sectors like solar energy, heat transfer, biomedicine, and aerospace. In this study, Al2O3 and TiO2 nanoparticles are evenly dispersed in a DI-water and ethylene glycol mixture using a 50:50 ratio with a 0.1 % volume concentration. Three surfactants (SDS, SDBS, and PVP) are utilized to investigate the effect of the surfactants on hybrid nanofluids. The study examines the thermophysical characteristics of these hybrid nanofluids across a temperature range of 30 to 70 0C in 20 0C intervals to understand their potential in various industrial applications. The results show the highest stability period for nanofluids with PVP compared to nanofluids with surfactant-free and other surfactants (SDS, SDBS). The thermal conductivity is slightly decreased (max 4.61%) due to PVP surfactant addition compared to other conditions. However, the nanofluids with PVP still exhibit more excellent thermal conductivity value than the base-fluid and significantly reduced viscosity (max 55%). Hence, the enhanced thermal conductivity and reduced viscosity with improved stability due to PVP addition significantly impact heat transfer performance. However, the maximum thermal conductivity was obtained for surfactant-free Al2O3-TiO2/Water-EG-based hybrid nanofluids that reveal a thermal conductivity that is 17.05 % higher than the based fluid. Instead, the lower viscosity of hybrid nanofluids was obtained at 70 0C with the addition of PVP surfactant. Therefore, adding surfactants positively impacts Al2O3-TiO2/Water-EG-based hybrid nanofluids with higher stability, enhancing thermal conductivity and reducing viscosity compared to the based fluids. The results show that adding surfactants at a fixed volume concentration affects thermal conductivity at low temperatures and viscosity at high temperatures, suggesting that these fluids might be used as cooling agents to increase pumping power in industrial applications.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3