Efficiency Comparisons of Robust and Non-Robust Estimators for Seemingly Unrelated Regressions Model

Author:

Youssef Ahmed H.1,Abonazel Mohamed R.1,Kamel Amr R.1

Affiliation:

1. Department of Applied Statistics and Econometrics, Faculty of Graduate Studies for Statistical Research (FGSSR), Cairo University, Giza 12613, EGYPT

Abstract

This paper studies and reviews several procedures for developing robust regression estimators of the seemingly unrelated regressions (SUR) model, when the variables are affected by outliers. To compare the robust estimators (M-estimation, S-estimation, and MM-estimation) with non-robust (traditional maximum likelihood and feasible generalized least squares) estimators of this model with outliers, the Monte Carlo simulation study has been performed. The simulation factors of our study are the number of equations in the system, the number of observations, the contemporaneous correlation among equations, the number of regression parameters, and the percentages of outliers in the dataset. The simulation results showed that, based on total mean squared error (TMSE), total mean absolute error (TMAE) and relative absolute bias (RAB) criteria, robust estimators give better performance than non-robust estimators; specifically, the MM-estimator is more efficient than other estimators. While when the dataset does not contain outliers, the results showed that the unbiased SUR estimator (feasible generalized least squares estimator) is more efficient than other estimators.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

General Mathematics

Reference39 articles.

1. A. Zellner, An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias, Journal of the American statistical Association, 57, 348-368 (1962).

2. A. Zellner, Estimators for seemingly unrelated regression equations: Some exact finite sample results, Journal of the American Statistical Association, 58, 977-992 (1963).

3. M.R. Abonazel, Different estimators for stochastic parameter panel data models with serially correlated errors. Journal of Statistics Applications & Probability 7.3, 423-434 (2018).

4. M.R. Abonazel, Generalized estimators of stationary random-coefficients panel data models: Asymptotic and small sample properties." Revstat Statistical Journal 17.4, 493-521(2019).

5. A.R. Kamel, Handling outliers in seemingly unrelated regression equations model, MSc thesis, Faculty of graduate studies for statistical research (FGSSR), Cairo University, Egypt, (2021).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3