Publisher
Deu Muhendislik Fakultesi Fen ve Muhendislik
Reference10 articles.
1. [1] Lorenz, E. 1963. Deterministic nonperiodic flow, J. Atmos. Sci., Vol. 20, No. 2 pp. 130-141. DOI: 10.1007/978-0-387-21830-4_2.
2. [2] Reitere P., Lainscsek, C.,Schuerrer F., Maquet J. 1998. A nine-dimensional Lorenz system to study high dimensional chaos, J. Phys. A: Math. Gen, Vol. 31, pp. 7121-7139. DOI: 10.1088/0305-4470/31/34/015.
3. [3] Kouagou J.N., Dlamini,P. G., Simelane S. M. 2020. On the multi-domain compact finite difference relaxation method for high dimensional chaos: The nine-dimensional Lorenz system, Alexandria Engineering Journal, Vol. 59, pp. 2617-2625. DOI: 10.1016/j.aej.2020.04.025.
4. [4] Mahmoud, E. E., Higazy, M., Al-Harthi, T. M. 2019. A new nine-dimensional chaotic Lorenz system with quaternion Variables: Complicated dynamics, electronic circuit design, anti-anticipating synchronization, and chaotic masking communication application, Mathematics, Vol. 7, pp. 877. DOI: 10.3390/math7100877.
5. [5] Dlamini, P., and Simelane, S. 2021. An Efficient Spectral Method-based Algorithm for Solving a High-dimensional Chaotic Lorenz System, Journal of Applied and Computational Mechanics, Vol 7, pp. 225-234. DOI: 10.22055/JACM.2020.34364.2393.