Affiliation:
1. Burdur Mehmet Akif Ersoy Üniversitesi, Mühendislik Mimarlık Fakültesi
Abstract
Görüntü işleme, gelişen yazılım ve donanım teknolojisine paralel olarak birçok sektörde kullanılmaktadır. Sektörlerin ihtiyaçlarına göre kullanılan görüntü tekniklerinde farklılık gözlemlenmektedir. Bu bağlamda sağlık alanında kullanılması çok hassas ölçümler ile güçlü algoritmalar gerekmektedir. Bu makalede, D-EYE ve FIRE gibi veri kümelerini kullanarak retina görüntüleri üzerinde görüntü mozaiği yapılmıştır. Görüntüler üzerinde özellik algılama, özellik eşleştirme, görüntü eşleştirme, görüntü sarmalama ve görüntü mozaikleme işlemleri uygulanmıştır. Görüntüdeki köşeleri bulmak için Harris köşe dedektörü kullanılmıştır. Köşe dedektörü ile karşılık gelen 2 görüntüdeki noktaların konumları bulunmuştur. Koordinatlar arasında öznitelik tanıma algoritması olarak Ölçek Değişmez Unsur Dönüşümü (SIFT) kullanılmıştır. Belirlenen öznitelikler arasında öznitelik ve görüntü eşleştirme işlemleri yapılmıştır. Rastgele Örnek Konsensüsü (RANSAC) yardımıyla zayıf noktalar ortadan kaldırılmıştır. Homografi, kalan noktalarla projektif dönüşüm için tanımlanmıştır. Son aşamada homografi matrisi ile geometrik bir dönüşüm yapılmıştır. Çalışmamızdaki görüntü mozaikleme uygulaması; retina görüntüleri, insansız hava aracı görüntüleri, bakteri veya tomografi görüntüleri başta olmak üzere geniş bir alana uygulanabilmektedir. Farklı veri setleri ile test edilmiş başarılı bir sonuç elde edilmiştir.
Publisher
Isparta Uygulamali Bilimler Universitesi