Transforming the science of transformation toward sustainability: the case of ammonia and reactive nitrogen

Author:

Whalen J. Marc1,Matlin Stephen A.23,Holme Thomas A.4,Stewart Jaclyn J.5,Mahaffy Peter G.67ORCID

Affiliation:

1. Dalhousie University

2. Imperial College London

3. International Organization for Chemical Sciences in Development

4. Iowa State University

5. University of British Columbia

6. the king's university - canada

7. King's Centre for Visualization in Science

Abstract

Chemistry has played a central role over the past century in the large-scale anthropogenic transformation of matter into diverse materials that have improved the quality of life for many people on our planet. The lens of chemistry is fundamentally necessary to understand the resulting flux of chemical substances in Earth system processes, the unintended consequences of those transformations, impacts on food supply security, water and energy concerns, ways to mediate and adapt to climate change, loss of biodiversity, and how best to build and maintain resilient ecosystems. Reactive nitrogen compounds (Nr) such as ammonia from the industrial fixation of atmospheric nitrogen exemplify both the central importance of chemistry in providing food and meeting basic human needs for a global population of 7.9 billion people and the sustainability challenges arising from the intended and unintended consequences of large-scale human production and release of Nr. The chemistry profession can use the Planetary Boundaries framework as a systems thinking tool to understand and address challenges facing the entire Earth system resulting from the altered biogeochemical flows of nitrogen. This analysis has compelling priority due to the roles Nr currently plays in global food production and ammonia’s potential role as an energy carrier for large-scale human activities in a future low carbon economy. As this example illustrates, navigating the complex benefits and challenges large-scale human activity imposes on Earth system processes requires the convergence of chemistry research, industrial practice, and education. Since the chemical reactions and processes that transform matter are foundational to sustainability challenges, this perspective maps multiple levels at which chemistry can contribute toward the emergence of sustainability of the Earth system. We conclude with recommendations for steps the profession of chemistry can take to make education relevant and engaging and to connect chemistry research and practice to cross-disciplinary sustainability challenges.

Publisher

American Chemical Society (ACS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3