High-resolution bootstrapped differential semblance

Author:

Abbad Brahim1,Ursin Bjørn2

Affiliation:

1. Statoil ASA, Oslo, Norway; previously Norwegian University of Science and Technology (NTNU), Trondheim, Norway..

2. Norwegian University of Science and Technology, Department of Petroleum Engineering and Applied Geophysics, Trondheim, Norway..

Abstract

We formulated two coherency measures, based on the bootstrapped differential semblance (BDS) estimator, that offered higher resolution in parameter tracking than did standard normalized differential semblance. Bootstrapping is a statistical resampling procedure used to infer estimates of standard errors and confidence intervals from data samples for which the statistical properties are unattainable via simple means, or when the probability density function is unkown or difficult to estimate. The first proposed estimator was based on a deterministic sorting of original offset traces by alternating near and far offsets to achieve maximized time shifts between adjacent traces. The near offsets were indexed with odd integers, while the even integers were used to index far offsets that were located at a constant index increment from the previous trace. The second was the product of several BDS terms, with the first term being the deterministic BDS defined above. The other terms were generated by random sorting of traces that alternated near and far offsets in an unpredictible manner. The proposed estimators could be applied in building velocity (and anellipticity) spectra for time-domain velocity analysis, depth-domain residual velocity update, or to any parameter-fitting algorithm involving discrete multichannel data. The gain in resolution provided by the suggested estimators over the differential semblance coefficient was illustrated on a number of synthetic and field data examples.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3