Normal modes in seismic data — Revisited

Author:

Landrø M.1,Hatchell P.2

Affiliation:

1. NTNU, Department of Petroleum Engineering and Applied Geophysics, Trondheim, Norway..

2. Shell Internation Exploration and Production Inc., Houston Texas, USA..

Abstract

At long distances from a seismic shot, the recorded signal is dominated by reflections and refractions within the water layer. This guided wave signal is complex and often is referred to as normal or harmonic modes. From the period equation, we derive a new approximate expression for the local minima in group velocity versus frequency. We use two data sets as examples: one old experiment where the seismic signal is recorded at approximately 13 km offset and another example using life of field seismic data from the Valhall Field. We identify four and five normal modes for the two examples, respectively. A fair fit is observed between the estimated and modeled normal mode curves. Based on the period equation for normal modes, we derive a simple, approximate equation that relates the traveltime difference between various modes directly to the velocity of the second layer. Using this technique for offsets ranging from 6 to 10 km (in step of 1 km), we find consistent velocity values for the second layer. We think that this method can be extended to estimate shallow lateral velocity variations if the method is applied for the whole field. We find that the simple equations and approximations used here offer a nice tool for initial investigations and understanding of normal modes, although a multilayered method is needed for detailed analysis. A comparison of three vintages of estimated normal mode curves for the Valhall field example representing seabed locations shifted by 1 km indicates that minor shifts in group velocity minima for the various modes are detectable.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3