Noise reduction and data recovery for a VLF-EM survey using a nonlinear decomposition method

Author:

Jeng Yih12,Lin Ming-Juin12,Chen Chih-Sung12,Wang Yu-Huai12

Affiliation:

1. National Taiwan Normal University, Department of Earth Sciences, Taipei, Taiwan. .

2. National Sun Yat-sen University, Institute of Applied Marine Physics and Underwater Technology, Kaohsiung, Taiwan. .

Abstract

Geologic noise and background electromagnetic (EM) waves often degrade the quality of very low frequency electromagnetic (VLF-EM) data. To retrieve signals with significant geologic information, we used a new nonlinear decomposition technique called the empirical mode decomposition (EMD) method with the Hilbert transform. We conducted a 2D resistivity model study that included inversion of the synthetic data to test the accuracy and capabilities of this method. Next, we applied this method to real data obtained from a field experiment and a geologic example. The filtering procedure for real data starts with applying the EMD method to decompose the VLF data into a series of intrinsic mode functions that admit a well-behaved Hilbert transform. With the Hilbert transform, the intrinsic mode functions yielded a spectrogram that presents an energy-wavenumber-distance distribution of the VLF data. We then examined the decomposed data and their spectrogram to determine the noise components, which we eliminated to obtain more reliable VLF data. The EMD-filtered data and their associated spectrograms indicated the successful application of this method. Because VLF data are recorded as a complex function of the real variable distance, the in-phase and quadrature parts are complementary components of each other and could be a Hilbert transform pair if the data are analytical and noise free. Therefore, by comparing the original data set with the one obtained from the Hilbert transform, we could evaluate data quality and could even replace the original with its Hilbert transform counterpart with acceptable accuracy. By application of both this technique and conventional methods to real data in this study, we have shown the superiority of this new method and have obtained a more reliable earth model by inverting the EMD-filtered data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference25 articles.

1. ELF and VLF radio waves

2. Two-dimensional, regularised inversion of VLF data

3. Quantitative 2D VLF data interpretation

4. Mapping groundwater contamination using dc resistivity and VLF geophysical methods–A case study

5. Chien, H.Y., 2006, Signal enhancement of ultra-shallow seismic data using empirical mode decomposition: M.Sc. thesis, National Taiwan Normal University.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3