Source-dependent bias of sferics in magnetotelluric responses

Author:

Hennessy Lachlan1ORCID,Macnae James1ORCID

Affiliation:

1. RMIT University, School of Science, Melbourne, Australia..

Abstract

The predominant signals of audio-frequency magnetotellurics (AMT) are called sferics, and they are generated by global lightning activity. When sferic signals are small or infrequent, measurement noise in electric and magnetic fields causes errors in estimated apparent resistivity and phase curves, leading to great model uncertainty. To reduce bias in apparent resistivity and phase, we use a global propagation model to link sferic signals in time series AMT data with commercially available lightning source information including strike time, location, and peak current. We then investigate relationships between lightning strike location, peak current, and the quality of the estimated apparent resistivity and phase curves using the bounded influence remote reference processing code. We use two empirical approaches to preprocessing time-series AMT data before estimation of apparent resistivity and phase: stitching and stacking (averaging). We find that for single-site AMT data, bias can be reduced by processing sferics from the closest and most powerful lightning strikes and omitting the lower amplitude signal-deficient segments in between. We hypothesized that bias can be further reduced by stacking sferics on the assumptions that lightning dipole moments are log-normally distributed whereas the superposed noise is normally distributed. Due to interference between dissimilar sferic waveforms, we tested a hybrid stitching-stacking approached based on clustering sferics using a wavelet-based waveform similarity algorithm. Our results indicate that the best approach to reduce bias was to stitch the closest and highest amplitude data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3