Affiliation:
1. China University of Geosciences, Institute of Geophysics and Geomatics, Wuhan, China..
2. Memorial University of Newfoundland, Department of Earth Sciences, St. John’s, Canada..
Abstract
A finite-element time-domain (FETD) electromagnetic forward solver for a complex-shaped transmitting loop is presented. Any complex-shaped source can be viewed as a combination of electric dipoles (EDs), each of which can be further decomposed into two horizontal EDs along the [Formula: see text]- and [Formula: see text]-directions and one vertical ED along the [Formula: see text]-direction. Using this method, a complex-shaped loop can be easily handled when implementing an FE method based on the total-field algorithm and an unstructured tetrahedral mesh. The FETD solver that we developed used a vector FE method and the first-order backward Euler method to discretize in space and time, respectively. Unstructured tetrahedral girds combined with a local refinement technique was used to exactly delineate topography and a deformed loop. This FETD solver was tested by the five following scenarios: a rectangular loop on a flat-surface half-space, a circular loop on a stratified medium, a rectangular loop laid on a slope-surface half-space, a rectangular loop laid on a slope with a conductive cubic body, and a complex-shaped loop on a real-life topography. The results of this FETD solver agreed well with the ones evaluated by the analytic methods for the first three examples, and with a frequency-domain FE solver combined with a cosine transform for the last two examples.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献