Affiliation:
1. Retired, Missouri City, Texas, USA..
Abstract
The old technology [Formula: see text]-[Formula: see text] deconvolution stands for [Formula: see text]-[Formula: see text] domain prediction filtering. Early versions of it are known to create signal leakage during their application. There have been recent papers in geophysical publications comparing [Formula: see text]-[Formula: see text] deconvolution results with the new technologies being proposed. These comparisons will be most effective if the best existing [Formula: see text]-[Formula: see text] deconvolution algorithms are used. This paper describes common [Formula: see text]-[Formula: see text] deconvolution algorithms and studies signal leakage occurring during their application on simple models, which will hopefully provide a benchmark for the readers in choosing [Formula: see text]-[Formula: see text] algorithms for comparison. The [Formula: see text]-[Formula: see text] deconvolution algorithms can be classified by their use of data which lead to transient or transient-free matrices and hence windowed or nonwindowed autocorrelations, respectively. They can also be classified by the direction they are predicting: forward design and apply; forward design and apply followed by backward design and apply; forward design and apply followed by application of a conjugated forward filter in the backward direction; and simultaneously forward and backward design and apply, which is known as noncausal filter design. All of the algorithm types mentioned above are tested, and the results of their analysis are provided in this paper on noise free and noisy synthetic data sets: a single dipping event, a single dipping event with a simple amplitude variation with offset, and three dipping events. Finally, the results of applying the selected algorithms on field data are provided.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献