Experiments and simulations of a prototype triaxial electromagnetic induction logging tool for open-hole hydraulic fracture diagnostics

Author:

Shiriyev Javid1ORCID,Brick Yaniv1ORCID,Zhang Peng1ORCID,Yilmaz Ali E.1,Torres-Verdín Carlos1ORCID,Sharma Mukul M.1,Hosbach Tom2,Oerkfitz Mark A.2,Gabelmann Jeff2

Affiliation:

1. The University of Texas at Austin, Austin, Texas, USA..

2. E-Spectrum Technologies, Inc., San Antonio, Texas, USA..

Abstract

The monitoring and diagnostics of induced fractures are important for the real-time performance evaluation of hydraulic fracturing operations. Previous electromagnetic-based studies show that single backbone triaxial induction logging tools are promising candidates for real-time monitoring and diagnosis of fractures in noncased wells. With a fast-forward solver and reliable parametric inversion techniques, it may be possible to estimate many features of the propped fracture geometry (e.g., area, dip, conductivity) from the measured induced voltages. To support the development of field deployable tools, the concept must be tested in experiments, in a controllable environment, before it is tested under field-like conditions. To this end, we have designed and built a prototype induction tool and performed two sets of tests to compare with numerical simulation results. The experimental setup consists of triaxial transmitter and receiver coils in coaxial, coplanar, and cross-polarized configurations. Thin (highly conductive) metallic targets of various sizes, shapes, and orientations are used to emulate various fracture geometries. The laboratory and shallow earth measurements are shown to be in good agreement with simulations for all examined cases. The average relative and maximum discrepancies of the measured signals from the simulated ones are lower than 3% and 10%, respectively. With the prototype tool, strong signals sensitive to the fracture’s surface area and dip are measured in a coaxial coil configuration, whereas weaker signals sensitive to the fracture’s aspect ratio are observed in a coplanar configuration. Cross-polarized signals are also shown to be strong and sensitive to the fracture’s dip. The results suggest that a tool of similar specifications can be used for the detection and extraction of the parameters of fractures propped with sufficiently electrically conductive proppant.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3