Algorithms for least‐squares linear prediction and maximum entropy spectral analysis—Part I: Theory

Author:

Barrodale I.1,Erickson R. E.2

Affiliation:

1. Department of Mathematics, University of Victoria, P.O. Box 1700, Victoria, B.C., Canada V8W 2Y2

2. Electromagnetics Section, Defence Research Establishment Pacific, FMO, CFB Esquimalt, Victoria, B. C., Canada V0S 1B0

Abstract

Experience with the maximum entropy spectral analysis (MESA) method suggests that (1) it can produce inaccurate frequency estimates of short sample sinusoidal data, and (2) it sometimes produces calculated values for the filter coefficients that are unduly contaminated by rounding errors. Consequently, in this report we develop an algorithm for solving the underlying least‐squares linear prediction (LSLP) problem directly, without forcing a Toeplitz structure on the model. This approach leads to more accurate frequency determination for short sample harmonic processes, and our algorithm is computationally efficient and numerically stable. The algorithm can also be applied to two other versions of the linear prediction problem. A Fortran program is given in Part II.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3