Feasibility analysis for time-lapse seafloor gravity monitoring of producing gas fields in the Northern Carnarvon Basin, offshore Australia

Author:

Young Wendy May1,Lumley David2

Affiliation:

1. Formerly The University of Western Australia, School of Earth & Environment, Crawley, Western Australia, Australia; presently Chevron Australia Pty Ltd., Perth, Western Australia, Australia..

2. The University of Western Australia, School of Physics, School of Earth and Environment, Crawley, Western Australia, Australia..

Abstract

Highly accurate seafloor gravity data can detect small density changes in subsurface hydrocarbon reservoirs by precisely repositioning the gravimeters on the seafloor. In producing gas fields, these small density changes are primarily caused by production-related changes to the pressure and gas/fluid saturations in the reservoir pore space. Knowledge of the pressure and saturation changes is vital to optimize the gas recovery, especially in offshore environments in which wells are expensive and sparse. We assessed the feasibility of time-lapse seafloor gravity monitoring for the giant gas fields in Australia’s premier hydrocarbon province, the Northern Carnarvon Basin. We determined that gravity monitoring is more feasible for reservoirs with a large areal extent and/or shallow burial depths, with high porosities and high net-to-gross sand ratios. Forward modeling of the gravity responses using simple equivalent geometry shapes and full 3D complex heterogeneous models predicted that density changes in several of these producing gas reservoirs will result in readily detectable gravity signals ([Formula: see text]) within just a year or so of gas production. In a pure water-drive production regime, this gravity response equated to a fieldwide change in the gas-water contact height of approximately 2–3 m, or in a pure depletion-drive regime, a pressure decline equated to approximately 3–4 MPa (435–580 psi). We assessed the feasibility of time-lapse seafloor gravity monitoring for producing gas reservoirs that is flexible and practical, and it may be useful for a wide range of subsurface fluid-flow monitoring applications.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3