Rock-physics templates for clay-rich source rocks

Author:

Carcione José M.1,Avseth Per2

Affiliation:

1. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Trieste, Italy..

2. Norwegian University of Science and Technology, Oslo, Trondheim, Norway and Tullow Oil, Oslo, Trondheim, Norway..

Abstract

Shale source rocks are composed of various minerals, mainly smectite and illite, depending on the burial depth, and they can be described as transversely isotropic media. The “pore space” may contain kerogen, water, oil, and gas determined by the in situ conditions. A petroelastic description is based on the following: Smectite-illite transformation as a function of depth is described by a fifth-order kinetic reaction. Backus averaging to “mix” isotropic smectite and anisotropic illite is then used to obtain the elasticity constants of the mineral composing the frame. Porosity is obtained from density, and water is part of the mineral, whose elasticity constants are obtained from Gassmann equations. Oil and gas generated from kerogen are assumed to saturate the kerogen phase. The bulk modulus of the oil-gas mixture is calculated by a mesoscopic-loss model, and the stiffnesses of the kerogen/fluid mixture are obtained with the Kuster and Toksöz model, assuming that the fluid is included in a kerogen matrix. Two models are considered to obtain the seismic velocities of the shale, namely, Backus averaging and the Gassmann equation generalized to the anisotropic case with a solid pore infill. We built rock-physics templates (RPTs) containing only kerogen (immature) and kerogen plus hydrocarbons (mature). Pore-pressure effects were modeled and used as templates. We considered the Kimmeridge Shale at different depths. To model kerogen-oil and oil-gas conversions, we assumed a basin-evolution model with a constant sedimentation rate, geothermal gradient, and a first-order kinetic (Arrhenius) reaction. The detection of the hydrocarbons was investigated from RPTs, built with wave velocities, impedances, Lamé constants, density, Poisson ratio, Young modulus, and anisotropy parameters for varying kerogen content, fluid saturations, and pore pressure. Moreover, the amplitude variation with offset intercept and gradients were computed, corresponding to the seismic response of a source rock layer for varying kerogen content and fluid saturation.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3