5D seismic data completion and denoising using a novel class of tensor decompositions

Author:

Ely Gregory1,Aeron Shuchin2,Hao Ning3,Kilmer Misha E.3

Affiliation:

1. Massachusetts Institute of Technology, Earth Resources Laboratory, Cambridge, Massachusetts, USA..

2. Tufts University, Department of Electrical Engineering, Medford, Massachusetts, USA..

3. Tufts University, Department of Mathematics, Medford, Massachusetts, USA..

Abstract

We have developed a novel strategy for simultaneous interpolation and denoising of prestack seismic data. Most seismic surveys fail to cover all possible source-receiver combinations, leading to missing data especially in the midpoint-offset domain. This undersampling can complicate certain data processing steps such as amplitude-variation-with-offset analysis and migration. Data interpolation can mitigate the impact of missing traces. We considered the prestack data as a 5D multidimensional array or otherwise referred to as a 5D tensor. Using synthetic data sets, we first found that prestack data can be well approximated by a low-rank tensor under a recently proposed framework for tensor singular value decomposition (tSVD). Under this low-rank assumption, we proposed a complexity-penalized algorithm for the recovery of missing traces and data denoising. In this algorithm, the complexity regularization was controlled by tuning a single regularization parameter using a statistical test. We tested the performance of the proposed algorithm on synthetic and real data to show that missing data can be reliably recovered under heavy downsampling. In addition, we demonstrated that compressibility, i.e., approximation of the data by a low-rank tensor, of seismic data under tSVD depended on the velocity model complexity and shot and receiver spacing. We further found that compressibility correlated with the recovery of missing data because high compressibility implied good recovery and vice versa.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3