Real-time event location using model-based estimation of arrival times and back azimuths of seismic phases

Author:

Hirabayashi Nobuyasu1

Affiliation:

1. Schlumberger, Sagamihara, Japan..

Abstract

I have devised a real-time procedure for locating events using an estimation method that analyzes arrival times and back azimuths of phases. The new procedure is applicable to data acquired by local array receivers, such as those used in single-well monitoring as well as by dense receiver networks, and also to noisy waveforms, such as those observed in hydraulic fracturing monitoring if the signal-to-noise ratio is greater than approximately 6 dB. The new procedure uses coalescence microseismic mapping to obtain predictions of arrival times. Based on these predictions, arrival times were estimated by picking the maximum of the ratio of the short-term average to the long-term average of a characteristic function computed for waveforms in an appropriate time window. The estimated arrival times were used in a probabilistic location method, and the probability density function (PDF) of the event location was generated. To locate events for a local array of receivers, the PDFs of event back azimuths obtained using polarizations were combined with the traveltime data to remove directional ambiguities. I have developed this method to generate the PDF of event back azimuths using the average of polarization misfits, which are the differences of the measured and computed polarizations for trial event locations, weighted by the signal-to-noise ratio. Synthetic and field data examples of single-well monitoring of hydraulic fracturing, which required the estimation of event back azimuths in addition to arrival times, were evaluated to determine the effectiveness of the new procedure.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3