Small-scale physical modeling of seismic-wave propagation using unconsolidated granular media

Author:

Bodet Ludovic1,Dhemaied Amine2,Martin Roland3,Mourgues Régis4,Rejiba Fayçal1,Tournat Vincent5

Affiliation:

1. Sorbonne Universités, UPMC Univ Paris 06, UMR 7619 METIS, Paris, France..

2. CERMES, UMR CNRS 8205, École des ponts ParisTech, Champs sur Marne, France..

3. GET, UMR CNRS 5563, Observatoire Midi-Pyrénées, Toulouse, France..

4. Université du Maine, LPG, UMR CNRS 6112, Le Mans, France..

5. Université du Maine, LAUM, UMR CNRS 6613, Le Mans, France..

Abstract

Laboratory physical modeling and laser-based experiments are frequently proposed to tackle theoretical and methodological issues related to seismic prospecting, e.g., when experimental validations of processing or inversion techniques are required. Lasers are mainly used to simulate typical field acquisition setups on homogeneous and consolidated materials assembled into laboratory-scale physical models (PMs) of various earth structures. We suggested the use of granular materials to study seismic-wave propagation in unconsolidated and porous media and target near-surface exploration and hydrogeologic applications. We designed and tested the reproducibility of an experimental procedure to build and probe PMs consisting of micrometric glass beads (GBs). A mechanical source and a laser-Doppler vibrometer were used to record small-scale seismic lines at the surface of three GBs models. When guided surface acoustic mode theory should prevail in such unconsolidated granular packed structure under gravity, we only considered elastic-wave propagation in stratified media to interpret recorded data. Thanks to basic seismic processing and inversion methods (first arrivals and dispersion analyses), we were able to correctly retrieve the gradients of pressure- and shear-wave velocities in our models. A 3D elastic finite difference simulation of the experiment offered, despite significant differences in terms of amplitudes, a supplementary validation of our approximation, as far as elastic properties of the medium were concerned.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3