Bayesian wavefield separation by transform-domain sparsity promotion

Author:

Wang Deli1234,Saab Rayan1234,Yilmaz Özgür1234,Herrmann Felix J.1234

Affiliation:

1. Jilin University, College of Geoexploration Science and Technology, Changchun, China; visiting University of British Columbia, Vancouver, Canada. .

2. University of British Columbia, Department of Electrical and Computer Engineering, Vancouver, Canada. .

3. University of British Columbia, Department of Mathematics, Vancouver, Canada. .

4. University of British Columbia, Seismic Laboratory for Imaging and Modeling, Department of Earth and Ocean Sciences, Vancouver, Canada. .

Abstract

Successful removal of coherent-noise sources greatly determines seismic imaging quality. Major advances have been made in this direction, e.g., surface-related multiple elimination (SRME) and interferometric ground-roll removal. Still, moderate phase, timing, amplitude errors, and clutter in predicted signal components can be detrimental. Adopting a Bayesian approach, along with assuming approximate curvelet-domain independence of the to-be-separated signal components, we construct an iterative algorithm that takes predictions produced by, for example, SRME as input and separates these components in a robust manner. In addition, the proposed algorithm controls the energy mismatch between separated and predicted components. Such a control, lacking in earlier curvelet-domain formulations, improves results for primary-multiple separation on synthetic and real data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference26 articles.

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3