Applications of supervised deep learning for seismic interpretation and inversion

Author:

Zheng York1,Zhang Qie2,Yusifov Anar2,Shi Yunzhi3

Affiliation:

1. BP, Sunbury-on-Thames, UK..

2. BP, Houston, Texas, USA..

3. University of Texas at Austin, Austin, Texas, USA..

Abstract

Recent advances in machine learning and its applications in various sectors are generating a new wave of experiments and solutions to solve geophysical problems in the oil and gas industry. We present two separate case studies in which supervised deep learning is used as an alternative to conventional techniques. The first case is an example of image classification applied to seismic interpretation. A convolutional neural network (CNN) is trained to pick faults automatically in 3D seismic volumes. Every sample in the input seismic image is classified as either a nonfault or fault with a certain dip and azimuth that are predicted simultaneously. The second case is an example of elastic model building — casting prestack seismic inversion as a machine learning regression problem. A CNN is trained to make predictions of 1D velocity and density profiles from input seismic records. In both case studies, we demonstrate that CNN models trained from synthetic data can be used to make efficient and effective predictions on field data. While results from the first example show that high-quality fault picks can be predicted from migrated seismic images, we find that it is more challenging in the prestack seismic inversion case where constraining the subsurface geologic variations and careful preconditioning of input seismic data are important for obtaining reasonably reliable results. This observation matches our experience using conventional workflows and methods, which also respond to improved signal to noise after migration and stack, and the inherent subsurface ambiguity makes unique parameter inversion difficult.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3