Extended use of receiver groups: Theory, synthetic example, and noise considerations

Author:

Haavik Kjetil E.1ORCID

Affiliation:

1. Equinor ASA, Stavanger 4035, Norway.(corresponding author).

Abstract

Receiver grouping is commonly used in marine towed-streamer seismic acquisition. Measurements from several receivers in a group are stacked to increase the signal-to-noise ratio of the resulting data and form an analog spatial antialiasing filter. I propose a method for extracting inline derivatives of the wavefield as additional measurements from the groups. This is achieved by multiplying the signal from the individual receivers in a group with predefined weights that corresponds to a finite-difference (FD) operator. The inline derivative(s) makes it possible to use multichannel sampling theorems to reconstruct the signal on a denser grid. Extraction of FD data from clusters of receivers is not a new concept, but I find that, by using the geometry of conventional streamer groups, it is possible to obtain FD data which are well suited for multichannel interpolation. The key to finding suitable FD operators is to recognize that it is not the ideal differentiation response we seek, but the impulse response of the group multiplied with the ideal differentiation response. Furthermore, under a Gaussian noise assumption, I derive formulas for the resulting noise level from sinc and higher order sinc interpolations. I find that the random noise level in the reconstructed data, when using higher order sinc interpolation, is expected to be higher than when using conventional sinc interpolation and will vary with respect to the distance from the original sampling points. The statistical analysis shows that it is beneficial to find FD operators with as small an [Formula: see text] norm as possible. A synthetic example shows that the proposed method of extracting FD operators and subsequent interpolation works very well. I foresee that the proposed method can be used to reduce the density of receivers (hydrophones or geophones) when designing new streamers or with existing equipment to improve the inline sampling.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3