Geophysical inversion for 3D contact surface geometry

Author:

Galley Christopher G.1ORCID,Lelièvre Peter G.2ORCID,Farquharson Colin G.1ORCID

Affiliation:

1. Memorial University of Newfoundland, Department of Earth Sciences, St. John’s, Newfoundland and Labrador A1B 3X7, Canada.(corresponding author); .

2. Mount Allison University, Department of Mathematics and Computer Science, Sackville, New Brunswick E4L 1E4, Canada..

Abstract

Geologists’ interpretations about the earth typically involve distinct rock units with contacts between them. Three-dimensional geologic models typically comprise surfaces of tessellated polygons that represent the contacts. In contrast, geophysical inversions typically are performed on voxel meshes comprising space-filling elements. Standard minimum-structure voxel inversions recover smooth models, inconsistent with typical geologic interpretations. Various voxel inversion methods have been developed that attempt to produce models more consistent with such interpretations. However, many of those methods involve increased numerical challenges and ultimately the underlying parameterization of the earth is still inconsistent with geologists’ interpretations. Surface geometry inversion (SGI) is a fundamentally different approach that effectively takes some initial surface-based model and alters the position of the contact surfaces to better fit the geophysical data. Many authors have developed SGI methods. In contrast to those, we are the first to develop a method with the following characteristics: we work directly with 3D explicit surfaces from an input geologic model of arbitrary complexity; we incorporate intersection detection methods to avoid unacceptable topological scenarios; we use global optimization strategies and stochastic sampling to solve the inverse problem and aid model assessment; and we use surface subdivision to reduce the number of model parameters, which also provides regularization without adding the complication of trade-off parameters in the objective function. We test our methods on simpler synthetic examples taken from early influential literature, and we demonstrate their typical use on a more complicated example based on a seafloor massive sulfide deposit. Our work provides a geophysical inversion approach that can work directly with 3D surface-based geologic models. With this approach, geophysical and geologic models can share the same parameterization; there is only a single model, with no need to translate information between two inconsistent parameterizations.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3