Challenges in shallow target reconstruction by 3D elastic full-waveform inversion — Which initial model?

Author:

Teodor Daniela1ORCID,Comina Cesare2ORCID,Khosro Anjom Farbod3ORCID,Brossier Romain4ORCID,Valentina Socco Laura3ORCID,Virieux Jean4

Affiliation:

1. Università degli Studi di Torino, Torino 10124, Italy and Université Grenoble Alpes, ISTerre, Grenoble F-38000, France..

2. Università degli Studi di Torino, Torino 10124, Italy..

3. Politecnico di Torino, Torino 10129, Italy..

4. Université Grenoble Alpes, ISTerre, Grenoble F-38000, France..

Abstract

Elastic full-waveform inversion (FWI) is a powerful tool for high-resolution subsurface multiparameter characterization. However, 3D FWI applied to land data for near-surface applications is particularly challenging because the seismograms are dominated by highly energetic, dispersive, and complex-scattered surface waves (SWs). In these conditions, a successful deterministic FWI scheme requires an accurate initial model. Our study, primarily focused on field data analysis for 3D applications, aims at enhancing the resolution in the imaging of complex shallow targets, by integrating devoted SW analysis techniques with a 3D spectral-element-based elastic FWI. From dispersion curves, extracted from seismic data recorded over a sharp-interface shallow target, we build different initial S-wave ([Formula: see text]) and P-wave ([Formula: see text]) velocity models (laterally homogeneous and laterally variable), using a specific data transform. Starting from these models, we carry out 3D FWI tests on synthetic and field data, using a relatively straightforward inversion scheme. The field data processing before FWI consists of band-pass filtering and muting of noisy traces. During FWI, a weighting function is applied to the far-offset traces. We test 2D and 3D acquisition layouts, with different positions of the sources and variable offsets. The 3D FWI workflow enriches the overall content of the initial models, allowing a reliable reconstruction of the shallow target, especially when using laterally variable initial models. Moreover, a 3D acquisition layout guarantees a better reconstruction of the target’s shape and lateral extension. In addition, the integration of model-oriented (preliminary monoparametric FWI) and data-oriented (time windowing) strategies into the main optimization scheme has produced further improvement of the FWI results.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3