Deep-seismic-prior-based reconstruction of seismic data using convolutional neural networks

Author:

Liu Qun1,Fu Lihua1ORCID,Zhang Meng2

Affiliation:

1. China University of Geosciences (Wuhan), School of Mathematics and Physics, Wuhan 430074, China.(corresponding author).

2. Central China Normal University, Department of Computer Science, Wuhan 430079, China..

Abstract

The reconstruction of seismic data with missing traces has been a long-standing issue in seismic data processing. Deep learning (DL) has emerged as a popular tool for seismic interpolation; it learns priors from training data sets of incomplete/complete data pairs. However, these DL methods are restricted to training data because they are supervised. When the features of the testing and training data are different, the recovery performance decreases, which prevents practical application. We have introduced a “deep-seismic-prior-based” approach via a convolution neural network (CNN), which captures priors based on the particular structure of the CNN, but it does not need any training data set. The ill-posed inverse problem in seismic interpolation is thus solved using the CNN structure as a prior, and the learned network weights are the parameters that represent the seismic data. Because the convolutional filter weights are shared to achieve spatial invariance, the CNN structure can function as a regularizer to guide network learning. In our method, corrupted seismic data are reconstructed during the iterative process by minimizing the mean square error between the network output and the original data. We applied our method for interpolating irregularly and regularly missing traces in prestack and poststack seismic data. The experimental results indicate that our approach outperforms the traditional singular spectrum analysis and the dealiased Cadzow methods commonly used in the reconstruction of such data.

Funder

the National Key R&D Program of China

Hubei Subsurface Multi-scale Imaging Key Laboratory

the Fundamental Research Funds for the Central Universities

Science and Technology Research Project of Hubei Provincial Department of Education

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3