Affiliation:
1. China University of Geosciences (Wuhan), School of Mathematics and Physics, Wuhan 430074, China.(corresponding author).
2. Central China Normal University, Department of Computer Science, Wuhan 430079, China..
Abstract
The reconstruction of seismic data with missing traces has been a long-standing issue in seismic data processing. Deep learning (DL) has emerged as a popular tool for seismic interpolation; it learns priors from training data sets of incomplete/complete data pairs. However, these DL methods are restricted to training data because they are supervised. When the features of the testing and training data are different, the recovery performance decreases, which prevents practical application. We have introduced a “deep-seismic-prior-based” approach via a convolution neural network (CNN), which captures priors based on the particular structure of the CNN, but it does not need any training data set. The ill-posed inverse problem in seismic interpolation is thus solved using the CNN structure as a prior, and the learned network weights are the parameters that represent the seismic data. Because the convolutional filter weights are shared to achieve spatial invariance, the CNN structure can function as a regularizer to guide network learning. In our method, corrupted seismic data are reconstructed during the iterative process by minimizing the mean square error between the network output and the original data. We applied our method for interpolating irregularly and regularly missing traces in prestack and poststack seismic data. The experimental results indicate that our approach outperforms the traditional singular spectrum analysis and the dealiased Cadzow methods commonly used in the reconstruction of such data.
Funder
the National Key R&D Program of China
Hubei Subsurface Multi-scale Imaging Key Laboratory
the Fundamental Research Funds for the Central Universities
Science and Technology Research Project of Hubei Provincial Department of Education
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献