Depositional impact on the elastic characteristics of the organic shale reservoir and its seismic application: A case study of the Longmaxi-Wufeng Shale in the Fuling gas field, Sichuan Basin

Author:

Zhao Luanxiao1ORCID,Wang Yang2ORCID,Liu Xiwu3,Zhang Jinqiang3,Liu Yuwei3,Qin Xuan4ORCID,Li Kejian1,Geng Jianhua1ORCID

Affiliation:

1. Tongji University, State Key Laboratory of Marine Geology, Shanghai, China..

2. University of Houston, Department of Earth and Atmospheric Sciences, Houston, Texas, USA..

3. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing, China and SINOPEC Petroleum Exploration and Production Research Institute, Beijing, China..

4. Southern University of Science and Technology, Department of Earth and Space Sciences, Shenzhen, China..

Abstract

Seismic characterization of the depositional evolution history of the organic shale reservoir is essential for reservoir quality evaluation and geologic model building in unconventional plays. However, a direct link between the depositional environment and seismic elastic responses in organic-rich shales remains unclear. By combining the depositional history and rock-physics analysis, we have determined how the depositional environment affects the elastic characteristics of the Longmaxi-Wufeng Shale in the Fuling gas field, Sichuan Basin, Southwestern China. Sedimentological control on the elastic properties mainly lies in two aspects: First, the distinct elastic features of the overlying turbidity mudstone and the underlying deepwater shelf Longmaxi Formation are primarily caused by the rock structure difference due to water energy; second, within the deepwater shelf siliceous shale formation, the elastic property variations are primarily controlled by the progradation tract system and water depths. We evaluate the effect of two types of quartz (biogenic quartz and detrital quartz) in conjunction with organic matter on the elasticity of organic shale. Furthermore, we determine that the two most commonly used seismic inversion attributes, P-impedances and the [Formula: see text] ratio, can be used to indicate the depositional facies evolution. This also gives insights into using geophysical attributes to directly characterize depositional facies for unconventional shale reservoirs.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

CAST

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3